Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function.

نویسندگان

  • Kelly A Butts
  • Joanne Weinberg
  • Allan H Young
  • Anthony G Phillips
چکیده

Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.

Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize tha...

متن کامل

Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task

Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neur...

متن کامل

Dopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons

Flexibly applying abstract rules is a hallmark feature of executive functioning represented by prefrontal cortex (PFC) neurons. Prefrontal networks are regulated by the neuromodulator dopamine, but how dopamine modulates high-level executive functions remains elusive. In monkeys performing a rule-based decision task, we report that both dopamine D1 and D2 receptors facilitated rule coding of PF...

متن کامل

The Role of the Endocannabinoids in Suppression of the Hypothalamic- pituitary-adrenal Axis Activity by Doxepin

Objective(s) The mechanism(s) by which antidepressants regulate the hypothalamic-pituitary-adrenal (HPA) axis remain elusive. The endocannabinoid system (eCBs) which exhibits antidepressant potential, appears to regulate the HPA axis activity. Therefore, we aimed to investigate the role of the eCBs in the action of doxepin including its effect on the HPA axis. Materials and Methods Male Wist...

متن کامل

Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats.

Dopaminergic neurotransmission in the nucleus accumbens (NAc) and neural processes in the basolateral (BLA) and central (CeN) amygdala nuclei are implicated in associative reward learning. Given their direct and indirect connections with the NAc and ventral tegmental area (VTA), both the BLA and CeN may regulate the mesoaccumbens dopamine (DA) system in rewarding situations. Electrical stimulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 45  شماره 

صفحات  -

تاریخ انتشار 2011